Stellar Multiplicity Through the APOGEE Lens

Christine Mazzola, Carles Badenes, Maxwell Moe, Kaitlin M. Kratter, Marina Kounkel, Kevin Covey, Sergey Koposov, Matthew G. Walker and the APOGEE RV variability community

cnm37@pitt.edu Ensenada 2019

Multiplicity statistics in the era of multiplexed spectroscopic surveys

$$\Delta RV_{\rm max} = |RV_{\rm max} - RV_{\rm min}| \qquad P$$

Σ

APOGEE parameters reveal the effects stellar evolution

Stars with larger log(g) have smaller P before RLOF occurs; thus, they have larger maximum ΔRV_{max}

log (P [day])

Raghavan et al. 2010 *P*-distribution for Sun-like stars; peaks ~ 870 yrs

APOGEE DR14 with M_{*} from Sanders & Das 2018; the outliers are known Algols The **Red Clump** (RC) behave like the lowest log(g) bin--they "recall" their former size

APOGEE abundances probe the impact of star formation

Mazzola et al. in prep

From Badenes et al. 2018, it was found that $frac(\Delta RV_{max} > 10 \text{ km s}^{-1})$ decreases with [Fe/H] in APOGEE DR13 red giants and dwarfs

 $f(M, P, q, e, \log(g), [Fe/H], ...?)$

Summary plots of APOGEE DR14 subgiants/dwarfs comparing the effects on multiplicity of [a/H] and [O/H] abundances across bins in [Fe/H], each with ~5500 stars

APOGEE DR14 dwarfs show lower RV variability with higher [a/H], [O/H], [Mg/H] and [Si/H]

APOGEE DR14 red giants $(2.0 < \log(g) < 3.25)$ do also, although the tip of the red giant branch sample $(\log(g) \le 2.0)$ is less clear

Summary plots of APOGEE DR14 subgiants/dwarfs comparing the effects on multiplicity of [Mg/H] and [Si/H] abundances across bins in [Fe/H], each with ~5500 stars

