A Closer Look at $v \sin (\mathrm{i})$ and the CBF through APOGEE

Christine Mazzola Daher

ImBaSE Workshop

Nov. 15, 2022

SDSS-IV: APOGEE-2 - Overview

- Infrared: H band accesses all major populations of the Milky Way
- High-resolution spectra: R ~ 22,500
- Public: well-documented and available for all!
- Multi-epoch: signs of unseen companions?

SDSS DR17 Release Paper (Abdurro'uf+2022)

Kollmeier+2017

RV Curves - Sparsely-Sampled $+\Delta R V_{\max }$

Problem: Survey Planning

Getting spectra for hundreds of thousands of stars means you can't get targeted RVs for most of them.

RV Curves - Sparsely-Sampled $+\Delta R V_{\text {max }}$

Problem: Survey Planning

Getting spectra for hundreds of thousands of stars means you can't get targeted RVs for most of them.

Problem: It's Complicated...

Multiplicity statistics are strong functions of the intrinsic and evolutionary properties of stars...and they are not independent of each other.

NSF Grant AST-1909022

RV Curves - Sparsely-Sampled $+\Delta R V_{\text {max }}$

Problem: Survey Planning

Getting spectra for hundreds of thousands of stars means you can't get targeted RVs for most of them.

Problem: It's Complicated...

Multiplicity statistics are strong functions of the intrinsic and evolutionary properties of stars...and they are not independent of each other.

NSF Grant AST-1909022

To constrain multiplicity in a complex multivariate space of stellar properties, we need large samples of well-measured stars.

RV Curves - Sparsely-Sampled $+\Delta R V_{\text {max }}$

Our Solution: Don't fit RV curves just use the data you have!

$$
\Delta R V_{\max }=\left|R V_{\max }-R V_{\min }\right|
$$

$$
f_{\mathrm{RVvar}}=\frac{\mathrm{N}_{\Delta \mathrm{RV}_{\max } \geq X \mathrm{~km} \mathrm{~s}^{-1}}}{\mathrm{~N}_{\text {total }}}
$$

$$
\sigma_{f_{\mathrm{RVvar}}}=\sqrt{\frac{f_{\mathrm{RVvar}}\left(1-f_{\mathrm{RVvar}}\right)}{\mathrm{N}_{\mathrm{total}}}}
$$

RV Curves - Sparsely-Sampled $+\Delta R V_{\text {max }}$

\rightarrow Simulate a sample of single and binary stars using observational distributions
\rightarrow Sample their RV curves based on real APOGEE visit cadences

RV Curves - Sparsely-Sampled $+\Delta R V_{\max }$

- Low $\Delta \mathrm{RV}_{\max }$ "core" dominated by single stars (gray) + long-period binaries

RV Curves - Sparsely-Sampled $+\Delta R V_{\text {max }}$

- Low $\Delta \mathrm{RV}_{\max }$ "core" dominated by single stars (gray) + long-period binaries
- High- $\Delta \mathrm{RV}_{\text {max }}$ "tail" dominated by short-period binaries

RV Curves - Sparsely-Sampled $+\Delta R V_{\max }$

- Low $\Delta \mathrm{RV}_{\max }$ "core" dominated by single stars (gray) + long-period binaries
- High- $\Delta \mathrm{RV}_{\text {max }}$ "tail" dominated by short-period binaries
- Choose a threshold $\Delta \mathrm{RV}_{\text {max }}$ value to define RV variability

RV Curves - Sparsely-Sampled $+\Delta R V_{\max }$

- Low $\Delta \mathrm{RV}_{\max }$ "core" dominated by single stars (gray) + long-period binaries
- High- $\Delta \mathrm{RV}_{\text {max }}$ "tail" dominated by short-period binaries
- Choose a threshold $\Delta \mathrm{RV}_{\text {max }}$ value to define RV variability

SDSS-IV: APOGEE-2 - Data

APOGEE RVs, $T_{\text {eff }}, \log (\mathrm{g})$

$v \sin (i):$ ASPCAP value + extra rotation fit by Jamie's pipeline [Tayar+2015, Dixon+2020]

Daher+22

SDSS-IV: APOGEE-2 - Data

APOGEE RVs, $T_{\text {eff }}, \log (g)$
$v \sin (\mathrm{i}):$ ASPCAP value + extra rotation fit by Jamie's pipeline [Tayar+2015, Dixon+2020]

Masses, distances, and ages from isochrone fits
[Sanders \& Das 2018]

Daher+22

SDSS-IV: APOGEE-2 - Data

APOGEE RVs, $T_{\text {eff }}, \log (\mathrm{g})$
$v \sin (\mathrm{i}):$ ASPCAP value + extra rotation fit by Jamie's pipeline [Tayar+2015, Dixon+2020]

Masses, distances, and ages from isochrone fits
[Sanders \& Das 2018]
SB2s identified in Marina's CCF analysis removed
[Mazzola+2020, Kounkel+2021]

Daher+22

SDSS-IV: APOGEE-2 - Data

APOGEE RVs, $T_{\text {eff }}, \log (g)$
$v \sin (i):$ ASPCAP value + extra rotation fit by Jamie's pipeline [Tayar+2015, Dixon+2020]

Masses, distances, and ages from isochrone fits
[Sanders \& Das 2018]
SB2s identified in Marina's CCF analysis removed
[Mazzola+2020, Kounkel+2021]

Daher+22

Results - Evolution

Compare observed $\Delta R V_{\max }$ to the max peak-to-peak shift of the RV curve,

$$
\Delta \mathrm{RV}_{\mathrm{pp}} \propto\left(\frac{M}{\mathrm{P}_{\text {crit }}}\right)^{1 / 3}
$$

$$
\mathrm{P}_{\text {crit }} \propto\left(\frac{G M}{g^{3}}\right)^{1 / 4}
$$

- Dwarfs and subgiants: smaller $\mathrm{P}_{\text {crit }} \rightarrow$ larger $\max \Delta R V_{\text {max }}$ values

Badenes, Mazzola+18

Results - Evolution

Compare observed $\Delta R V_{\max }$ to the max peak-to-peak shift of the RV curve,

$$
\Delta \mathrm{RV}_{\mathrm{pp}} \propto\left(\frac{M}{\mathrm{P}_{\text {crit }}}\right)^{1 / 3}
$$

$$
\mathrm{P}_{\text {crit }} \propto\left(\frac{G M}{g^{3}}\right)^{1 / 4}
$$

- Dwarfs and subgiants: smaller $\mathrm{P}_{\text {crit }} \rightarrow$ larger $\max \Delta R V_{\text {max }}$ values
- Red clump (He-burning): similar $\Delta \mathrm{RV}_{\max }$ to stars at the Tip of the Red Giant Branch, reminiscent of their time spent there

Badenes, Mazzola+18 before He fusion

Results - Evolution + Synchronization

Compare observed $\Delta \mathrm{RV}_{\max }$ to the max peak-to-peak shift of the RV curve,

$$
\Delta \mathrm{RV}_{\mathrm{pp}} \propto\left(\frac{M}{\mathrm{P}_{\text {crit }}}\right)^{1 / 3}
$$

$$
\mathrm{P}_{\mathrm{crit}} \propto\left(\frac{G M}{g^{3}}\right)^{1 / 4}
$$

- Stars with large $\Delta \mathrm{RV}_{\max } \rightarrow$ larger rotation speeds, $v \sin (i)$

Daher+22

Results - Evolution + Synchronization

Compare observed $\Delta \mathrm{RV}_{\max }$ to the max peak-to-peak shift of the RV curve,
$\Delta \mathrm{RV}_{\mathrm{pp}} \propto\left(\frac{M}{\mathrm{P}_{\text {crit }}}\right)^{1 / 3}$

$$
\mathrm{P}_{\text {crit }} \propto\left(\frac{G M}{g^{3}}\right)^{1 / 4}
$$

- Stars with large $\Delta \mathrm{RV}_{\max } \rightarrow$ larger rotation speeds, $v \sin (i)$

Hints of tidal interactions in close binaries?

Results - Evolution + Synchronization

$v \sin (i) \propto \frac{1}{\mathrm{P}_{\mathrm{rot}}} \sqrt{\frac{G M}{g}}$
$\Delta \mathrm{RV}_{\mathrm{pp}} \propto\left(\frac{M}{\mathrm{P}_{\mathrm{crit}}}\right)^{1 / 3}$
$\mathrm{P}_{\text {crit }} \propto\left(\frac{G M}{g^{3}}\right)^{1 / 4}$

Assume rotational synchronization -- upper limits on $v \sin (\mathrm{i})$ and $\Delta \mathrm{RV}_{\text {max }}$!

Adapted from Daher+2022

Results - Gyrochronology

Predictions from Gyrochronology

- Young stars can rotate at a range of speeds due to leftover angular momentum from birth.

Results - Gyrochronology

Predictions from Gyrochronology

- Young stars can rotate at a range of speeds due to leftover angular momentum from birth.
- In isolation, older MS stars below the Kraft break will naturally spin down over time.

Results - Gyrochronology

Predictions from Gyrochronology

- Young stars can rotate at a range of speeds due to leftover angular momentum from birth.
- In isolation, older MS stars below the Kraft break will naturally spin down over time.
- Rotationally synchronized MS binaries rapidly rotate regardless of age.

Results - Gyrochronology

Predictions from Gyrochronology

- Young stars can rotate at a range of speeds due to leftover angular momentum from birth.
- In isolation, older MS stars below the Kraft break will naturally spin down over time.
- Rotationally synchronized MS binaries rapidly rotate regardless of age.

We both expect and observe an age-dependent correlation between $v \sin (i)$ and the CBF!

Future Work - Rapid Rotators

Possibly sub-subgiants [Geller+17a, Leiner+17, Geller+17b]

Don Dixon is looking at their TESS lightcurves in more detail!

Or...poor fits by APOGEE, leading to anomalously cool $\mathrm{Teff}_{\text {ff? }}$

See Rachel Patton's poster and forthcoming paper for more!

Summary

- APOGEE's formula for success: (high-res spectra + multi-epoch RV curves) x $\sim 10^{5}$ Milky Way field stars
= large, statistical sample to study stellar multiplicity
- Sparse RV curves? No problem! Just use $\Delta \mathrm{RV} \mathrm{max}$ to infer the presence of close companions up to $\log (P / \mathrm{d}) \leq 4$.
- With this, we've found:
- Hints of tidal interactions via rotation: trends in data agree with simple rotational synchronization limits + attrition of short period systems as stars evolve
- Link between age, rotation, and binarity: age-dependent correlation between rotation and CBF agree with expectations from gyrochronology

EX: Future Work - Rapid Rotators

- Likely to be synchronized: tightly constrain $P_{\text {orb }}$ and compare with $P_{\text {rot }}$
- Seek follow-up RVs with MWM when needed
- Gaia DR3 should be able to help constrain radius and $\sin (\mathrm{i})$, improving $\mathrm{P}_{\text {rot }}$ from $\mathrm{v} \sin (\mathrm{i})$
- Likely to be interacting: search light curves for signs of active interactions
- Can come from ASAS-SN, TESS, ZTF, Kepler, and in the future, LSST/VRO
- Unusually fast rotation: hyper-rotating when dwarfs, true binaries but unlucky
 RVs, or merger remnants??

EX: Future Work - Bayesian Inference $+P_{\text {orb }}$

NSF Grant AST-1909022
It may be impossible to tightly constrain a given binary's $\mathrm{P}_{\text {orb }}$ with $2-3$ RVs... But we can constrain $\mathrm{P}_{\text {orb }}$ as a function of Fe and α abundances using the weak constraints of 100,000 s of APOGEE/MWM stars!

EX: Future Work - Bayesian Inference $+P_{\text {orb }}$

EX: Results - Evolution + Synchronization

Compare the fastest rotators as a function of $\log (\mathrm{g})$:

- Gray squares: median $v \sin (\mathrm{i})$ of the 10 fastest rotators
- Black arrows: v sin(i) of fastest rotator

Daher+22

EX: Results - Evolution + Synchronization

Compare the fastest rotators as a

 function of $\log (\mathrm{g})$:- Gray squares: median $v \sin (\mathrm{i})$ of the 10 fastest rotators
- Black arrows: v sin(i) of fastest rotator

Compare them against the max $v \sin (\mathrm{i})$ we expect from rotational synchronization, $\mathrm{P}_{\text {rot }} \approx \mathrm{P}_{\text {crit }}$:

Daher+22

EX: Results - Gyrochronology

Huge discrepancies between isochronal and gyro ages, and not explainable by [Fe/H] differences!

EX: RV Curves - Sparsely-Sampled $+\Delta R V_{\text {max }}$

How well does $\Delta R V_{\max }$ capture the true RV variability of a
(i) a very close binary: $\mathrm{P}=1$ day ($\mathrm{a} \approx 0.02 \mathrm{AU}$)
(ii) a bit wider binary: $\mathrm{P} \approx 27$ years ($\mathrm{a} \approx 11 \mathrm{AU}$)

EX: RV Curves - $\Delta R V_{\max }+$ Marginalize Over Inclination

Simulate 1000 systems with inclinations randomly sampled from a uniform distribution

EX: RV Curves - $f_{\text {RVvar }}$-> CBF

Convert f_{RVvar} into a completeness-corrected close binary fraction based upon simulated binaries and our chosen $\Delta \mathrm{RV}_{\max }$ threshold!

Adapted from Mazzola+2020

EX: RV Errors - Observed

Troup+2016

APOGEE reports $\sim 100 \mathrm{~m} / \mathrm{s}$

Milky Way Mapper (SDSS-V) hopes for $10 \mathrm{~m} / \mathrm{s}$!

EX: RV Errors - Observed

APOGEE reports $\sim 100 \mathrm{~m} / \mathrm{s}$

Milky Way Mapper (SDSS-V) hopes for $10 \mathrm{~m} / \mathrm{s}$!
Truthfully, RV errors are hard...

EX: RV Errors - Observed

RV errors, and thus the $\Delta R V_{\max }$ core, increase based on sample properties

- lower $\log (\mathrm{g})$ (RV jitter)
- lower [Fe/H] (weaker lines)

Badenes, CMD+2018

Mazzola+2020
Some success modeling with a Student's t distribution as compared to Gaussian

EX: CBF and Rotation - Gaia RUWEs

- RUWEs are larger for MS than for RG
- RUWEs are larger for RV variables and rapid rotators

